加载中...
1932

Abstract

Restriction factors serve as innate host defenses against viruses and act as critical barriers to cross-species transmission. In response, viruses have evolved accessory proteins to counteract restriction factors, enabling evasion of innate immune responses. The interplay between primate APOBEC3G (A3G) and lentiviral virion infectivity factor (Vif) exemplifies a molecular arms race between a restriction factor and its viral antagonist. This review integrates evolutionary and functional analyses of this system, showing how genetic signatures of molecular arms races map onto high-resolution cryo–electron microscopy structures. However, A3G's interaction with Vif is not limited to the evolutionary dynamic interface, characterized by rapidly evolving residues under selective pressure, but also involves a conserved interface mediated by RNA binding that positions A3G for antagonism by Vif. These findings propose a model wherein Vif and potentially other viral antagonists target functional complexes using a dual strategy: leveraging both adaptive interfaces subject to evolutionary pressures and conserved interfaces that constrain host escape mechanisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092623-091351
2025-09-25
2026-02-03

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/virology/12/1/annurev-virology-092623-091351.html?itemId=/content/journals/10.1146/annurev-virology-092623-091351&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Sheehy AM, Gaddis NC, Choi JD, Malim MH. 2002.. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. . Nature 418::64650
    [Crossref] [Google Scholar]
  2. 2.
    Chaipan C, Smith JL, Hu WS, Pathak VK. 2013.. APOBEC3G restricts HIV-1 to a greater extent than APOBEC3F and APOBEC3DE in human primary CD4+ T cells and macrophages. . J. Virol. 87::44453
    [Crossref] [Google Scholar]
  3. 3.
    Jarmuz A, Chester A, Bayliss J, Gisbourne J, Dunham I, et al. 2002.. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. . Genomics 79::28596
    [Crossref] [Google Scholar]
  4. 4.
    Harris RS, Petersen-Mahrt SK, Neuberger MS. 2002.. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. . Mol. Cell 10::124753
    [Crossref] [Google Scholar]
  5. 5.
    Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L. 2003.. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. . Nature 424::9498
    [Crossref] [Google Scholar]
  6. 6.
    Gifford RJ. 2012.. Viral evolution in deep time: lentiviruses and mammals. . Trends Genet. 28::89100
    [Crossref] [Google Scholar]
  7. 7.
    Han GZ, Worobey M. 2012.. Endogenous lentiviral elements in the weasel family (Mustelidae). . Mol. Biol. Evol. 29::29058
    [Crossref] [Google Scholar]
  8. 8.
    Daugherty MD, Malik HS. 2012.. Rules of engagement: molecular insights from host-virus arms races. . Annu. Rev. Genet. 46::677700
    [Crossref] [Google Scholar]
  9. 9.
    Duggal NK, Emerman M. 2012.. Evolutionary conflicts between viruses and restriction factors shape immunity. . Nat. Rev. Immunol. 12::68795
    [Crossref] [Google Scholar]
  10. 10.
    Meyerson NR, Sawyer SL. 2011.. Two-stepping through time: mammals and viruses. . Trends Microbiol. 19::28694
    [Crossref] [Google Scholar]
  11. 11.
    Malim MH, Emerman M. 2008.. HIV-1 accessory proteins—ensuring viral survival in a hostile environment. . Cell Host Microbe 3::38898
    [Crossref] [Google Scholar]
  12. 12.
    Mitchell PS, Patzina C, Emerman M, Haller O, Malik HS, Kochs G. 2012.. Evolution-guided identification of antiviral specificity determinants in the broadly acting interferon-induced innate immunity factor MxA. . Cell Host Microbe 12::598604
    [Crossref] [Google Scholar]
  13. 13.
    Compton AA, Hirsch VM, Emerman M. 2012.. The host restriction factor APOBEC3G and retroviral Vif protein coevolve due to ongoing genetic conflict. . Cell Host Microbe 11::9198
    [Crossref] [Google Scholar]
  14. 14.
    Holmes EC. 2004.. Adaptation and immunity. . PLOS Biol. 2::e307
    [Crossref] [Google Scholar]
  15. 15.
    Hurst LD. 2002.. The Ka/Ks ratio: diagnosing the form of sequence evolution. . Trends Genet. 18::48687
    [Crossref] [Google Scholar]
  16. 16.
    Bogerd HP, Doehle BP, Wiegand HL, Cullen BR. 2004.. A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. . PNAS 101::377074
    [Crossref] [Google Scholar]
  17. 17.
    Mariani R, Chen D, Schrofelbauer B, Navarro F, Konig R, et al. 2003.. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. . Cell 114::2131
    [Crossref] [Google Scholar]
  18. 18.
    Xu H, Svarovskaia ES, Barr R, Zhang Y, Khan MA, et al. 2004.. A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. . PNAS 101::565257
    [Crossref] [Google Scholar]
  19. 19.
    Ortiz M, Bleiber G, Martinez R, Kaessmann H, Telenti A. 2006.. Patterns of evolution of host proteins involved in retroviral pathogenesis. . Retrovirology 3::11
    [Crossref] [Google Scholar]
  20. 20.
    Sawyer SL, Emerman M, Malik HS. 2004.. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. . PLOS Biol. 2::e275
    [Crossref] [Google Scholar]
  21. 21.
    Binning JM, Chesarino NM, Emerman M, Gross JD. 2019.. Structural basis for a species-specific determinant of an SIV Vif protein toward hominid APOBEC3G antagonism. . Cell Host Microbe 26::73947.e4
    [Crossref] [Google Scholar]
  22. 22.
    Chesarino NM, Emerman M. 2022.. HIV-1 Vif gained breadth in APOBEC3G specificity after cross-species transmission of its precursors. . J. Virol. 96::e0207121
    [Crossref] [Google Scholar]
  23. 23.
    Etienne L, Bibollet-Ruche F, Sudmant PH, Wu LI, Hahn BH, Emerman M. 2015.. The role of the antiviral APOBEC3 gene family in protecting chimpanzees against lentiviruses from monkeys. . PLOS Pathog. 11::e1005149
    [Crossref] [Google Scholar]
  24. 24.
    Peeters M, Courgnaud V. 2002.. Overview of primate lentiviruses and their evolution in non-human primates in Africa. . In HIV Sequence Compendium, ed. Kuiken C, Foley B, Leitner T, Apetrei C, Hahn B, et al. , pp. 223. Los Alamos National Laboratory
    [Google Scholar]
  25. 25.
    Mangeat B, Turelli P, Liao S, Trono D. 2004.. A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. . J. Biol. Chem. 279::1448183
    [Crossref] [Google Scholar]
  26. 26.
    Schrofelbauer B, Chen D, Landau NR. 2004.. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). . PNAS 101::392732
    [Crossref] [Google Scholar]
  27. 27.
    Huthoff H, Malim MH. 2007.. Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and virion encapsidation. . J. Virol. 81::380715
    [Crossref] [Google Scholar]
  28. 28.
    Compton AA, Emerman M. 2013.. Convergence and divergence in the evolution of the APOBEC3G-Vif interaction reveal ancient origins of simian immunodeficiency viruses. . PLOS Pathog. 9::e1003135
    [Crossref] [Google Scholar]
  29. 29.
    Letko M, Booiman T, Kootstra N, Simon V, Ooms M. 2015.. Identification of the HIV-1 Vif and human APOBEC3G protein interface. . Cell Rep. 13::178999
    [Crossref] [Google Scholar]
  30. 30.
    Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D. 2003.. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. . Nature 424::99103
    [Crossref] [Google Scholar]
  31. 31.
    Letko M, Silvestri G, Hahn BH, Bibollet-Ruche F, Gokcumen O, et al. 2013.. Vif proteins from diverse primate lentiviral lineages use the same binding site in APOBEC3G. . J. Virol. 87::1186171
    [Crossref] [Google Scholar]
  32. 32.
    Etienne L, Hahn BH, Sharp PM, Matsen FA, Emerman M. 2013.. Gene loss and adaptation to hominids underlie the ancient origin of HIV-1. . Cell Host Microbe 14::8592
    [Crossref] [Google Scholar]
  33. 33.
    Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, et al. 2003.. DNA deamination mediates innate immunity to retroviral infection. . Cell 113::8039
    [Crossref] [Google Scholar]
  34. 34.
    Zennou V, Perez-Caballero D, Gottlinger H, Bieniasz PD. 2004.. APOBEC3G incorporation into human immunodeficiency virus type 1 particles. . J. Virol. 78::1205861
    [Crossref] [Google Scholar]
  35. 35.
    Svarovskaia ES, Xu H, Mbisa JL, Barr R, Gorelick RJ, et al. 2004.. Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs. . J. Biol. Chem. 279::3582228
    [Crossref] [Google Scholar]
  36. 36.
    York A, Kutluay SB, Errando M, Bieniasz PD. 2016.. The RNA binding specificity of human APOBEC3 proteins resembles that of HIV-1 nucleocapsid. . PLOS Pathog. 12::e1005833
    [Crossref] [Google Scholar]
  37. 37.
    Yu Q, Konig R, Pillai S, Chiles K, Kearney M, et al. 2004.. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. . Nat. Struct. Mol. Biol. 11::43542
    [Crossref] [Google Scholar]
  38. 38.
    Chelico L, Pham P, Calabrese P, Goodman MF. 2006.. APOBEC3G DNA deaminase acts processively 3′ → 5′ on single-stranded DNA. . Nat. Struct. Mol. Biol. 13::39299
    [Crossref] [Google Scholar]
  39. 39.
    Hultquist JF, Lengyel JA, Refsland EW, LaRue RS, Lackey L, et al. 2011.. Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1. . J. Virol. 85::1122034
    [Crossref] [Google Scholar]
  40. 40.
    Rathore A, Carpenter MA, Demir O, Ikeda T, Li M, et al. 2013.. The local dinucleotide preference of APOBEC3G can be altered from 5′-CC to 5′-TC by a single amino acid substitution. . J. Mol. Biol. 425::444254
    [Crossref] [Google Scholar]
  41. 41.
    Vartanian JP, Meyerhans A, Asjo B, Wain-Hobson S. 1991.. Selection, recombination, and G→A hypermutation of human immunodeficiency virus type 1 genomes. . J. Virol. 65::177988
    [Crossref] [Google Scholar]
  42. 42.
    Janini M, Rogers M, Birx DR, McCutchan FE. 2001.. Human immunodeficiency virus type 1 DNA sequences genetically damaged by hypermutation are often abundant in patient peripheral blood mononuclear cells and may be generated during near-simultaneous infection and activation of CD4+ T cells. . J. Virol. 75::797386
    [Crossref] [Google Scholar]
  43. 43.
    Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, et al. 2013.. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. . Cell 155::54051
    [Crossref] [Google Scholar]
  44. 44.
    Bruner KM, Murray AJ, Pollack RA, Soliman MG, Laskey SB, et al. 2016.. Defective proviruses rapidly accumulate during acute HIV-1 infection. . Nat. Med. 22::104349
    [Crossref] [Google Scholar]
  45. 45.
    Delviks-Frankenberry KA, Nikolaitchik OA, Burdick RC, Gorelick RJ, Keele BF, et al. 2016.. Minimal contribution of APOBEC3-induced G-to-A hypermutation to HIV-1 recombination and genetic variation. . PLOS Pathog. 12::e1005646
    [Crossref] [Google Scholar]
  46. 46.
    Piantadosi A, Humes D, Chohan B, McClelland RS, Overbaugh J. 2009.. Analysis of the percentage of human immunodeficiency virus type 1 sequences that are hypermutated and markers of disease progression in a longitudinal cohort, including one individual with a partially defective Vif. . J. Virol. 83::780514
    [Crossref] [Google Scholar]
  47. 47.
    Kieffer TL, Kwon P, Nettles RE, Han Y, Ray SC, Siliciano RF. 2005.. G→A hypermutation in protease and reverse transcriptase regions of human immunodeficiency virus type 1 residing in resting CD4+ T cells in vivo. . J. Virol. 79::197580
    [Crossref] [Google Scholar]
  48. 48.
    Gandhi SK, Siliciano JD, Bailey JR, Siliciano RF, Blankson JN. 2008.. Role of APOBEC3G/F-mediated hypermutation in the control of human immunodeficiency virus type 1 in elite suppressors. . J. Virol. 82::312530
    [Crossref] [Google Scholar]
  49. 49.
    Munk C, Jensen BE, Zielonka J, Haussinger D, Kamp C. 2012.. Running loose or getting lost: how HIV-1 counters and capitalizes on APOBEC3-induced mutagenesis through its Vif protein. . Viruses 4::313261
    [Crossref] [Google Scholar]
  50. 50.
    Holmes RK, Koning FA, Bishop KN, Malim MH. 2007.. APOBEC3F can inhibit the accumulation of HIV-1 reverse transcription products in the absence of hypermutation: comparisons with APOBEC3G. . J. Biol. Chem. 282::258795
    [Crossref] [Google Scholar]
  51. 51.
    Luo K, Wang T, Liu B, Tian C, Xiao Z, et al. 2007.. Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation. . J. Virol. 81::723848
    [Crossref] [Google Scholar]
  52. 52.
    Kobayashi T, Koizumi Y, Takeuchi JS, Misawa N, Kimura Y, et al. 2014.. Quantification of deaminase activity-dependent and -independent restriction of HIV-1 replication mediated by APOBEC3F and APOBEC3G through experimental-mathematical investigation. . J. Virol. 88::588187
    [Crossref] [Google Scholar]
  53. 53.
    Yu X, Yu Y, Liu B, Luo K, Kong W, et al. 2003.. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. . Science 302::105660
    [Crossref] [Google Scholar]
  54. 54.
    Conticello SG, Harris RS, Neuberger MS. 2003.. The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G. . Curr. Biol. 13::200913
    [Crossref] [Google Scholar]
  55. 55.
    Sheehy AM, Gaddis NC, Malim MH. 2003.. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. . Nat. Med. 9::14047
    [Crossref] [Google Scholar]
  56. 56.
    Guo Y, Dong L, Qiu X, Wang Y, Zhang B, et al. 2014.. Structural basis for hijacking CBF-β and CUL5 E3 ligase complex by HIV-1 Vif. . Nature 505::22933
    [Crossref] [Google Scholar]
  57. 57.
    Collins A, Littman DR, Taniuchi I. 2009.. RUNX proteins in transcription factor networks that regulate T-cell lineage choice. . Nat. Rev. Immunol. 9::10615
    [Crossref] [Google Scholar]
  58. 58.
    Zhang W, Du J, Evans SL, Yu Y, Yu XF. 2011.. T-cell differentiation factor CBF-β regulates HIV-1 Vif-mediated evasion of host restriction. . Nature 481::37679
    [Crossref] [Google Scholar]
  59. 59.
    Jager S, Kim DY, Hultquist JF, Shindo K, LaRue RS, et al. 2011.. Vif hijacks CBF-β to degrade APOBEC3G and promote HIV-1 infection. . Nature 481::37175
    [Crossref] [Google Scholar]
  60. 60.
    Taniuchi I, Osato M, Egawa T, Sunshine MJ, Bae SC, et al. 2002.. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. . Cell 111::62133
    [Crossref] [Google Scholar]
  61. 61.
    Hu Y, Gudnadottir RB, Knecht KM, Arizaga F, Jonsson SR, Xiong Y. 2023.. Structural basis for recruitment of host CypA and E3 ubiquitin ligase by maedi-visna virus Vif. . Sci. Adv. 9::eadd3422
    [Crossref] [Google Scholar]
  62. 62.
    Stanley BJ, Ehrlich ES, Short L, Yu Y, Xiao Z, et al. 2008.. Structural insight into the human immunodeficiency virus Vif SOCS box and its role in human E3 ubiquitin ligase assembly. . J. Virol. 82::865663
    [Crossref] [Google Scholar]
  63. 63.
    Azimi FC, Lee JE. 2020.. Structural perspectives on HIV-1 Vif and APOBEC3 restriction factor interactions. . Protein Sci. 29::391406
    [Crossref] [Google Scholar]
  64. 64.
    Hu Y, Desimmie BA, Nguyen HC, Ziegler SJ, Cheng TC, et al. 2019.. Structural basis of antagonism of human APOBEC3F by HIV-1 Vif. . Nat. Struct. Mol. Biol. 26::117683
    [Crossref] [Google Scholar]
  65. 65.
    Sharp PM, Hahn BH. 2011.. Origins of HIV and the AIDS pandemic. Cold Spring Harb. . Perspect. Med. 1::a006841
    [Google Scholar]
  66. 66.
    Keele BF, Van Heuverswyn F, Li Y, Bailes E, Takehisa J, et al. 2006.. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. . Science 313::52326
    [Crossref] [Google Scholar]
  67. 67.
    Nakano Y, Yamamoto K, Ueda MT, Soper A, Konno Y, et al. 2020.. A role for gorilla APOBEC3G in shaping lentivirus evolution including transmission to humans. . PLOS Pathog. 16::e1008812
    [Crossref] [Google Scholar]
  68. 68.
    Pery E, Rajendran KS, Brazier AJ, Gabuzda D. 2009.. Regulation of APOBEC3 proteins by a novel YXXL motif in human immunodeficiency virus type 1 Vif and simian immunodeficiency virus SIVagm Vif. . J. Virol. 83::237481
    [Crossref] [Google Scholar]
  69. 69.
    Russell RA, Pathak VK. 2007.. Identification of two distinct human immunodeficiency virus type 1 Vif determinants critical for interactions with human APOBEC3G and APOBEC3F. . J. Virol. 81::820110
    [Crossref] [Google Scholar]
  70. 70.
    Russell RA, Smith J, Barr R, Bhattacharyya D, Pathak VK. 2009.. Distinct domains within APOBEC3G and APOBEC3F interact with separate regions of human immunodeficiency virus type 1 Vif. . J. Virol. 83::19922003
    [Crossref] [Google Scholar]
  71. 71.
    Chen G, He Z, Wang T, Xu R, Yu XF. 2009.. A patch of positively charged amino acids surrounding the human immunodeficiency virus type 1 Vif SLVx4Yx9Y motif influences its interaction with APOBEC3G. . J. Virol. 83::867482
    [Crossref] [Google Scholar]
  72. 72.
    Schrofelbauer B, Senger T, Manning G, Landau NR. 2006.. Mutational alteration of human immunodeficiency virus type 1 Vif allows for functional interaction with nonhuman primate APOBEC3G. . J. Virol. 80::598491
    [Crossref] [Google Scholar]
  73. 73.
    Compton AA, Malik HS, Emerman M. 2013.. Host gene evolution traces the evolutionary history of ancient primate lentiviruses. . Philos. Trans. R. Soc. B 368::20120496
    [Crossref] [Google Scholar]
  74. 74.
    Kouno T, Luengas EM, Shigematsu M, Shandilya SM, Zhang J, et al. 2015.. Structure of the Vif-binding domain of the antiviral enzyme APOBEC3G. . Nat. Struct. Mol. Biol. 22::48591
    [Crossref] [Google Scholar]
  75. 75.
    Yang H, Ito F, Wolfe AD, Li S, Mohammadzadeh N, et al. 2020.. Understanding the structural basis of HIV-1 restriction by the full length double-domain APOBEC3G. . Nat. Commun. 11::632
    [Crossref] [Google Scholar]
  76. 76.
    Bohn MF, Shandilya SM, Albin JS, Kouno T, Anderson BD, et al. 2013.. Crystal structure of the DNA cytosine deaminase APOBEC3F: the catalytically active and HIV-1 Vif-binding domain. . Structure 21::104250
    [Crossref] [Google Scholar]
  77. 77.
    Chen KM, Harjes E, Gross PJ, Fahmy A, Lu Y, et al. 2008.. Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. . Nature 452::11619
    [Crossref] [Google Scholar]
  78. 78.
    Maiti A, Myint W, Delviks-Frankenberry KA, Hou S, Kanai T, et al. 2020.. Crystal structure of a soluble APOBEC3G variant suggests ssDNA to bind in a channel that extends between the two domains. . J. Mol. Biol. 432::604260
    [Crossref] [Google Scholar]
  79. 79.
    Li YL, Langley CA, Azumaya CM, Echeverria I, Chesarino NM, et al. 2023.. The structural basis for HIV-1 Vif antagonism of human APOBEC3G. . Nature 615::72833
    [Crossref] [Google Scholar]
  80. 80.
    Ito F, Alvarez-Cabrera AL, Liu S, Yang H, Shiriaeva A, et al. 2023.. Structural basis for HIV-1 antagonism of host APOBEC3G via Cullin E3 ligase. . Sci. Adv. 9::eade3168
    [Crossref] [Google Scholar]
  81. 81.
    Kouno T, Shibata S, Shigematsu M, Hyun J, Kim TG, et al. 2023.. Structural insights into RNA bridging between HIV-1 Vif and antiviral factor APOBEC3G. . Nat. Commun. 14::4037
    [Crossref] [Google Scholar]
  82. 82.
    Alce TM, Popik W. 2004.. APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. . J. Biol. Chem. 279::3408386
    [Crossref] [Google Scholar]
  83. 83.
    Apolonia L, Schulz R, Curk T, Rocha P, Swanson CM, et al. 2015.. Promiscuous RNA binding ensures effective encapsidation of APOBEC3 proteins by HIV-1. . PLOS Pathog. 11::e1004609
    [Crossref] [Google Scholar]
  84. 84.
    Khan MA, Kao S, Miyagi E, Takeuchi H, Goila-Gaur R, et al. 2005.. Viral RNA is required for the association of APOBEC3G with human immunodeficiency virus type 1 nucleoprotein complexes. . J. Virol. 79::587074
    [Crossref] [Google Scholar]
  85. 85.
    Luo K, Liu B, Xiao Z, Yu Y, Yu X, et al. 2004.. Amino-terminal region of the human immunodeficiency virus type 1 nucleocapsid is required for human APOBEC3G packaging. . J. Virol. 78::1184152
    [Crossref] [Google Scholar]
  86. 86.
    Schafer A, Bogerd HP, Cullen BR. 2004.. Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor. . Virology 328::16368
    [Crossref] [Google Scholar]
  87. 87.
    Wang T, Zhang W, Tian C, Liu B, Yu Y, et al. 2008.. Distinct viral determinants for the packaging of human cytidine deaminases APOBEC3G and APOBEC3C. . Virology 377::7179
    [Crossref] [Google Scholar]
  88. 88.
    Burnett A, Spearman P. 2007.. APOBEC3G multimers are recruited to the plasma membrane for packaging into human immunodeficiency virus type 1 virus-like particles in an RNA-dependent process requiring the NC basic linker. . J. Virol. 81::500013
    [Crossref] [Google Scholar]
  89. 89.
    van Hemert FJ, Berkhout B. 1995.. The tendency of lentiviral open reading frames to become A-rich: constraints imposed by viral genome organization and cellular tRNA availability. . J. Mol. Evol. 41::13240
    [Crossref] [Google Scholar]
  90. 90.
    van Hemert FJ, van der Kuyl AC, Berkhout B. 2013.. The A-nucleotide preference of HIV-1 in the context of its structured RNA genome. . RNA Biol. 10::21115
    [Crossref] [Google Scholar]
  91. 91.
    van Der Kuyl AC, Berkhout B. 2012.. The biased nucleotide composition of the HIV genome: a constant factor in a highly variable virus. . Retrovirology 9::92
    [Crossref] [Google Scholar]
  92. 92.
    Bohn JA, Thummar K, York A, Raymond A, Brown WC, et al. 2017.. APOBEC3H structure reveals an unusual mechanism of interaction with duplex RNA. . Nat. Commun. 8::1021
    [Crossref] [Google Scholar]
  93. 93.
    Yang H, Kim K, Li S, Pacheco J, Chen XS. 2022.. Structural basis of sequence-specific RNA recognition by the antiviral factor APOBEC3G. . Nat. Commun. 13::7498
    [Crossref] [Google Scholar]
  94. 94.
    Riquelme-Barrios S, Pereira-Montecinos C, Valiente-Echeverria F, Soto-Rifo R. 2018.. Emerging roles of N6-methyladenosine on HIV-1 RNA metabolism and viral replication. . Front. Microbiol. 9::576
    [Crossref] [Google Scholar]
  95. 95.
    Navarro F, Bollman B, Chen H, Konig R, Yu Q, et al. 2005.. Complementary function of the two catalytic domains of APOBEC3G. . Virology 333::37486
    [Crossref] [Google Scholar]
  96. 96.
    Huthoff H, Autore F, Gallois-Montbrun S, Fraternali F, Malim MH. 2009.. RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1. . PLOS Pathog. 5::e1000330
    [Crossref] [Google Scholar]
  97. 97.
    Dang Y, Wang X, Zhou T, York IA, Zheng YH. 2009.. Identification of a novel WxSLVK motif in the N terminus of human immunodeficiency virus and simian immunodeficiency virus Vif that is critical for APOBEC3G and APOBEC3F neutralization. . J. Virol. 83::854452
    [Crossref] [Google Scholar]
  98. 98.
    Zhang H, Pomerantz RJ, Dornadula G, Sun Y. 2000.. Human immunodeficiency virus type 1 Vif protein is an integral component of an mRNP complex of viral RNA and could be involved in the viral RNA folding and packaging process. . J. Virol. 74::825261
    [Crossref] [Google Scholar]
  99. 99.
    Harper JW, Schulman BA. 2021.. Cullin-RING ubiquitin ligase regulatory circuits: a quarter century beyond the F-box hypothesis. . Annu. Rev. Biochem. 90::40329
    [Crossref] [Google Scholar]
  100. 100.
    Scott DC, Rhee DY, Duda DM, Kelsall IR, Olszewski JL, et al. 2016.. Two distinct types of E3 ligases work in unison to regulate substrate ubiquitylation. . Cell 166::1198214.e24
    [Crossref] [Google Scholar]
  101. 101.
    Huttenhain R, Xu J, Burton LA, Gordon DE, Hultquist JF, et al. 2019.. ARIH2 is a Vif-dependent regulator of CUL5-mediated APOBEC3G degradation in HIV infection. . Cell Host Microbe 26::8699.e7
    [Crossref] [Google Scholar]
  102. 102.
    Albin JS, Anderson JS, Johnson JR, Harjes E, Matsuo H, et al. 2013.. Dispersed sites of HIV Vif-dependent polyubiquitination in the DNA deaminase APOBEC3F. . J. Mol. Biol. 425::117282
    [Crossref] [Google Scholar]
  103. 103.
    Iwatani Y, Chan DSB, Liu L, Yoshii H, Shibata J, et al. 2009.. HIV-1 Vif-mediated ubiquitination/degradation of APOBEC3G involves four critical lysine residues in its C-terminal domain. . PNAS 106::1953944
    [Crossref] [Google Scholar]
  104. 104.
    Horn-Ghetko D, Krist DT, Prabu JR, Baek K, Mulder MPC, et al. 2021.. Ubiquitin ligation to F-box protein targets by SCF–RBR E3–E3 super-assembly. . Nature 590::67176
    [Crossref] [Google Scholar]
  105. 105.
    Kostrhon S, Prabu JR, Baek K, Horn-Ghetko D, von Gronau S, et al. 2021.. CUL5-ARIH2 E3-E3 ubiquitin ligase structure reveals cullin-specific NEDD8 activation. . Nat. Chem. Biol. 17::107583
    [Crossref] [Google Scholar]
  106. 106.
    Kutluay SB, Zang T, Blanco-Melo D, Powell C, Jannain D, et al. 2014.. Global changes in the RNA binding specificity of HIV-1 Gag regulate virion genesis. . Cell 159::1096109
    [Crossref] [Google Scholar]
  107. 107.
    Khan MA, Aberham C, Kao S, Akari H, Gorelick R, et al. 2001.. Human immunodeficiency virus type 1 Vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic RNA. . J. Virol. 75::725265
    [Crossref] [Google Scholar]
  108. 108.
    Henriet S, Richer D, Bernacchi S, Decroly E, Vigne R, et al. 2005.. Cooperative and specific binding of Vif to the 5′ region of HIV-1 genomic RNA. . J. Mol. Biol. 354::5572
    [Crossref] [Google Scholar]
  109. 109.
    Bernacchi S, Henriet S, Dumas P, Paillart JC, Marquet R. 2007.. RNA and DNA binding properties of HIV-1 Vif protein: a fluorescence study. . J. Biol. Chem. 282::2636168
    [Crossref] [Google Scholar]
  110. 110.
    Zheng YH, Irwin D, Kurosu T, Tokunaga K, Sata T, Peterlin BM. 2004.. Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. . J. Virol. 78::607376
    [Crossref] [Google Scholar]
  111. 111.
    Dang Y, Siew LM, Wang X, Han Y, Lampen R, Zheng YH. 2008.. Human cytidine deaminase APOBEC3H restricts HIV-1 replication. . J. Biol. Chem. 283::1160614
    [Crossref] [Google Scholar]
  112. 112.
    Marin M, Golem S, Rose KM, Kozak SL, Kabat D. 2008.. Human immunodeficiency virus type 1 Vif functionally interacts with diverse APOBEC3 cytidine deaminases and moves with them between cytoplasmic sites of mRNA metabolism. . J. Virol. 82::98798
    [Crossref] [Google Scholar]
  113. 113.
    Greenwood EJ, Matheson NJ, Wals K, van den Boomen DJ, Antrobus R, et al. 2016.. Temporal proteomic analysis of HIV infection reveals remodelling of the host phosphoproteome by lentiviral Vif variants. . eLife 5::e18296
    [Crossref] [Google Scholar]
  114. 114.
    Salamango DJ, Ikeda T, Moghadasi SA, Wang J, McCann JL, et al. 2019.. HIV-1 Vif triggers cell cycle arrest by degrading cellular PPP2R5 phospho-regulators. . Cell Rep. 29::105765.e4
    [Crossref] [Google Scholar]
  115. 115.
    Marelli S, Williamson JC, Protasio AV, Naamati A, Greenwood EJ, et al. 2020.. Antagonism of PP2A is an independent and conserved function of HIV-1 Vif and causes cell cycle arrest. . eLife 9::e53036
    [Crossref] [Google Scholar]
  116. 116.
    Salamango DJ, McCann JL, Demir O, Becker JT, Wang J, et al. 2020.. Functional and structural insights into a Vif/PPP2R5 complex elucidated using patient HIV-1 isolates and computational modeling. . J. Virol. 94::e00631-20
    [Crossref] [Google Scholar]
  117. 117.
    Nagata K, Shindo K, Matsui Y, Shirakawa K, Takaori-Kondo A. 2020.. Critical role of PP2A-B56 family protein degradation in HIV-1 Vif mediated G2 cell cycle arrest. . Biochem. Biophys. Res. Commun. 527::25763
    [Crossref] [Google Scholar]
  118. 118.
    Hu Y, Delviks-Frankenberry KA, Wu C, Arizaga F, Pathak VK, Xiong Y. 2024.. Structural insights into PPP2R5A degradation by HIV-1 Vif. . Nat. Struct. Mol. Biol. 31:(10):1492501
    [Crossref] [Google Scholar]
  119. 119.
    Ito F, Alvarez-Cabrera AL, Kim K, Zhou ZH, Chen XS. 2023.. Structural basis of HIV-1 Vif-mediated E3 ligase targeting of host APOBEC3H. . Nat. Commun. 14::5241
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-092623-091351
Loading
/content/journals/10.1146/annurev-virology-092623-091351
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error